It’s been tried. Now What?

Government justifies the money it spends on research by saying it’s for theoretical research that industry can’t afford to do.

A good example of theoretical research is particle research that requires building huge accelerators, such as the Fermilab, to investigate the fundamentals of matter.

Actually, much of the money being spent by the Department of Energy (DOE) is on applied research.

With applied research, it’s very likely that industry has already investigated the possibility of pursuing a particular line of research, and found it to be uneconomic.

Be that as it may, the question arises what to do next after DOE has found its efforts to be uneconomic. Stop investing in the research, or throw good money after bad?

An excellent example of this is hydrokinetics for rivers, referred to as water power, analogous to wind power.

The theory is simple: Fast running water in rivers can turn propeller-like turbines to generate electricity. The same principle applies to tidal waters and estuaries.

Hydrokinetic Turbines from DOE Brochure
Examples of hydrokinetic Turbines, from DOE Brochure

The Electric Power Research Institute (EPRI) studied hydrokinetic opportunities on rivers and found that, at best, hydrokinetics might be able to provide 3% of America’s electricity.

The EPRI report goes on to say that the actual amount that’s practical to produce is an unknown fraction of 3%.

In other words, a lot less than 3%.

Nearly half of this is in the lower Mississippi River, from St. Louis, south.

Here is what a 2010 report by the Alaska Center for Energy and Power said about impediments to hydrokinetics: “Hydrokinetic technology can be affected by debris,

sediment, frazil and surface ice, river dynamics (turbulence, current velocity, channel stability), and the effect of turbine operations on fish and marine mammals and their habitat.”

In addition to these problems the installations produce small amounts of electricity. For example, the trial at Minnesota’s Hastings Dam, utilized two turbines rated 100 KW each. Each unit was roughly 12 feet in diameter.

The physical size of these units would surely interfere with river barge traffic unless they are installed adjacent to existing dams.

Units rated 100 or 200 KW produce very small amounts of electricity. In addition, each location requires expensive connections to the grid.

Typically, groups like the Union of Concerned Scientists support this type of uneconomic development, because it’s renewable and doesn’t emit CO2.

Cost figures are currently unavailable, but a quick look at the units’ size and complexity would indicate high cost.

These comments apply to rivers, and not necessarily to estuaries and tidal waters.

Siemens, for example, is testing a 1.5 MW unit, the same nameplate rating as most wind turbines, that’s 120 feet long in European waters. Voith, from Germany, is building a 1 MW unit in Cherbourg, France.

It’s unknown how these units will survive the rigors of salt water, such as from fouling, i.e., barnacles, or how costly they will ultimately be, but at least, they may produce credible amounts of electricity.

River hydrokinetic installations, however, provide minuscule amounts of electricity, and are very costly.

In addition, these comments do not apply to adding generating capabilities to existing dams where generating equipment is not currently installed. See More Hydro is Better than Wind that describes this opportunity.

Perhaps DOE could find better uses of tax payer money than supporting hydrokinetics for river applications.

*  *  *  *  *  *

 

To find earlier articles, click on the name of the preceding month below the calendar to display a list of articles published in that month. Continue clicking on the name of the preceding month to display articles published in prior months.

© Power For USA, 2010 – 2013. Unauthorized use and/or duplication of this material without express and written permission from this blog’s author, Donn Dears, LLC, is strictly prohibited. Excerpts and links may be used, provided that full and clear credit is given to Power For USA with appropriate and specific direction to the original content.

 

 

 

 

0 thoughts on “It’s been tried. Now What?

  1. Donn…just about every article these days implies the CO2 is “bad.”
    One should go to CO2Science.com and then to Education Center
    and then to Major Reports and then read any of the top three, but
    especially the “Prudent” one…how excellent!
    CO2 is so GOOD…Vern Cornell

  2. I agree. Several of my articles have been on why CO2 is not a problem. There was an excellent op-ed in the WSJ recently on why CO2 is good.
    I mentioned CO2 in this instance to highlight, once again, why CO2 i.e., global warming, is an energy issue. It’s impeding the use of energy and promoting the development of very inefficient types of power generation.

  3. Pingback: Weekly Climate and Energy News Roundup | Watts Up With That?

Leave a Reply

Your email address will not be published. Required fields are marked *

*